

#### San Jacinto River: Modeling Workshop #2 Preliminary Model Calibration Results

Presented by David Keith, Kirk Ziegler, and Kevin Russell

November 10, 2011

#### **Meeting Agenda**

| Introductions/review of modeling objectives                                                                                                                                        | 8:00 - 8:15   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Review of modeling framework                                                                                                                                                       | 8:15 - 8:30   |
| <ul> <li>Hydrodynamic model calibration</li> <li>Review of ADCP data collected during 2010 and 2011</li> <li>Calibration approach</li> <li>Calibration results</li> </ul>          | 8:30 - 9:30   |
| BREAK                                                                                                                                                                              | 9:30 - 9:45   |
| <ul> <li>Sediment transport model calibration</li> <li>Geochronology analysis of radioisotope cores</li> <li>Calibration approach</li> <li>Calibration results</li> </ul>          | 9:45 - 10:45  |
| <ul> <li>Chemical fate and transport model</li> <li>Review of key model inputs and underlying datasets</li> <li>Model development updates</li> <li>Calibration approach</li> </ul> | 10:45 - 11:45 |

#### **Presentation Overview**

- Review of modeling objectives
- Review of modeling framework
- Hydrodynamic model
- Sediment transport model
- Chemical fate and transport model

3

#### Review of Modeling Objectives



#### **Primary Objectives**

- Develop CSMs for sediment transport and chemical fate and transport
- Develop and apply models that can be used as a management tool to evaluate the effectiveness of various remedial alternatives
- Answer specific questions about sediment transport and chemical fate and transport processes within the Study Area



5

#### **Questions: Sediment Transport Model**

- What areas are net depositional, net erosional, or in dynamic equilibrium?
- What is the net sedimentation rate in areas that are net depositional?
- What is the potential scour depth during highflow events or storms?
- What is the fate of sediment eroded from the waste impoundment area?

#### **Questions:**

#### **Chemical Fate and Transport Model**

- What is the fate of particle-associated chemicals that are remobilized from the waste impoundment area under current conditions?
- What is the rate of natural attenuation of chemical concentrations in surface-layer sediment in locations that may be impacted by releases from the waste impoundment?

#### **Questions:**

#### **Chemical Fate and Transport Model (cont.)**

- What are the effects of high-flow events or storms on chemical concentrations in the surface layer of the sediment bed and in the water column?
- What is the potential for erosion, transport, and re-deposition of particle-associated chemicals buried below the surface layer of the bed during high-flow events or storms?

8

#### Review of Modeling Framework



9

#### **SJR Modeling Framework**

Hydrodynamic Model: EFDC

Current velocity
Stage height/water depth
Bed shear stress

Sediment Transport Model: SEDZLJ

Total suspended solids (TSS)
concentration
Bed elevation change
Erosion/deposition zones
Net sedimentation rate

Chemical Fate and Transport Model: QEA-FATE

Water column chemical concentration

Bed chemical concentration

## SJR Modeling Framework: Previous Modeling Studies

- Models have been applied to a wide range of sites
  - Patrick Bayou (TX)
  - Upper Hudson River (NY)
  - Lower Duwamish Waterway (WA)
  - Lower Willamette River (OR)
- Models have undergone peer review as well as project-specific agency reviews

### Hydrodynamic Model

#### **Numerical Grid**

- Approximately 6,400 grid cells
- Includes HSC and SJR channel up to dam
- 100-foot resolution within site perimeter
- Simulation times
  - Hydro: 66 hours/year
  - Sedtran: 6 hours/year



### **Boundary Condition: Flow Rate at Lake Houston Dam**

- June 2005 to present
  - CWA flow rate data
- July 1996 to June 2005
  - U.S. Geological Survey (USGS) stage height data (correlation between stage height and flow rate)

#### **Boundary Condition: Flow Rate at**

#### **Lake Houston Dam**

- Before July 1996
  - Estimated using flow rate data collected at six USGS gauging stations located upstream of Lake Houston



#### **Boundary Condition: Flow Rate Into HSC**

- Inflow to the HSC was estimated using USGS data collected on five sub-basins
  - Buffalo Bayou
  - Sims Bayou
  - Vince Bayou
  - Hunting Bayou
  - Greens Bayou

#### **Boundary Condition: Tidal Elevation**

- Specified using hourly data collected at National Oceanic and **Atmospheric Association** (NOAA) gauging station located at Morgan's Point
- Strong correlation exists between tidal elevations at Morgan's Point and **Battleship Texas**



## **Boundary Condition: Tidal Elevation (cont.)**



## Hydrodynamic Model: Calibration Strategy

- Use current velocity and stage height data collected during 2010 and 2011
- Adjustable parameter: effective bed roughness
- Calibration value: 1 cm



# Calibration Results: June to July 2010



# **Calibration Results: May 2011**



### **Calibration Results: June 2011**



### BREAK (?)

### Sediment Transport Model

## Sediment Size Classes and Settling Speeds

 Effective particle diameters were estimated for classes 2,3, and 4 using GSD data from 168 samples (0-1 ft) collected during 2010 and 2011

| Sediment Size Class   | Effective Particle<br>Diameter (µm) | Settling Speed<br>(m/day) |
|-----------------------|-------------------------------------|---------------------------|
| 1: clay/silt          | N/A                                 | Calibration parameter     |
| 2: fine sand          | 140                                 | 870                       |
| 3: medium/coarse sand | 510                                 | 5,200                     |
| 4: gravel             | 3,500                               | 21,700                    |

## **Specification of Sediment Transport Model Inputs**

- The following model inputs were specified using site-specific data
  - Sediment bed map
  - Bulk bed properties
    - Median particle diameter  $(D_{50})$ , effective bed roughness  $(D_{90})$  initial bed composition, bulk (dry) density
  - Erosion rates of cohesive sediment
  - Incoming sediment load

#### **Sediment Bed Map**



# **Sediment Bed Properties: Initial Composition**

- Based on GSD data from 168 samples (0-1 ft) collected during 2010 and 2011
- Developed method to generate spatial distribution of  $D_{50}$  and bed composition

| Sediment Class | Average Content:<br>Cohesive Bed (%) | Average Content:<br>Non-Cohesive Bed (%) |
|----------------|--------------------------------------|------------------------------------------|
| 1: clay/silt   | 51                                   | 11                                       |
| 2: fine sand   | 32                                   | 36                                       |
| 3: coarse sand | 12                                   | 47                                       |
| 4: gravel      | 5                                    | 6                                        |

# Spatial Distribution: D<sub>50</sub>

- Assumed that there is a functional relationship between  $D_{50}$  and bed shear stress
- Higher  $D_{50}$  in areas of higher bed shear stress
- Have used similar approach in other studies



# Spatial Distribution: $D_{50}$ (cont.)

- Used GSD data to constrain  $D_{50} = f(\tau)$
- Next step was to develop correlations between D<sub>50</sub> and bed composition using GSD data



# Initial Composition: Clay/Silt





### **Initial Composition: Fine Sand**





# Sediment Transport Model: Calibration Strategy

- Primary calibration target is net sedimentation rates (NSR) determined from radioisotope core data collected at ten locations during May 2011
- TSS concentration data received from TCEQ will be used to the fullest extent possible to evaluate model performance

# Radioisotope Coring Study



### **Geochronology Analysis: Age-Dating Using Cs-137 Data**

- Peak Cs-137 activity corresponds to circa 1963
- Provides average NSR during 48-year period (1963 to 2011)



## **Geochronology Analysis: Age-Dating Using Pb-210 Data**

 NSR is determined from rate of decreasing Pb-210 activity with increasing depth



# Geochronology Analysis



## **Geochronology: Core 3**



## **Geochronology: Core 5 – Method 1**



## **Geochronology: Core 5 – Method 1 (cont.)**



## Geochronology: Core 5 – Method 2



## **Geochronology: Core 5 – Method 2 (cont.)**



# Sediment Transport Model: Calibration Strategy

- 21-year (1990 to 2010) simulation was conducted
- Predicted NSR values were compared to estimated NSR values
- Model parameters may be adjusted during calibration
  - Settling speed of class 1 (clay/silt)
    - Typical range: approximately 1 to 20 meters/day
- Active layer thickness in cohesive bed

#### **Cohesive Bed Erosion: Bed Model**



Schematic of interactions between the water column, active layer, and parent-bed layer when the active-buffer layer is present



# 21-Year Calibration Period: 1990 to 2010





## 21-Year Calibration Period: 1990 to 2010



# Preliminary Calibration Results: Average NSR



DRAFT: MODEL RESULTS ARE PRELIMINARY
-- DO NOT CITE OR QUOTE



# 21-Year Calibration Period: Sediment Mass Balance





Units: metric tons/year

# **Chemical Fate and Transport Model**

#### **Outline – Fate Model**

- Review model structure and processes
- Model development
  - Review of key model inputs and underlying datasets
  - Model input updates
    - Expansion to include OCDD
    - Specification of external loads
    - Development of organic carbon inputs
- Model calibration approach

# Fate Model Structure and Processes

## Fate Model Linkages



### **Processes Simulated by Fate Model**



## **Chemical Species Simulated by Model**

- Calibration focused on 2378D and 2378F
  - Likely key risk drivers
- OCDD included as secondary focus
  - Provide means of differentiating regional sources from waste pit source
  - Adds robustness to calibration due to differing behavior (*Kow*) and spatial patterns

# Fate Model Development

## Fate Model Inputs – General

- Initial conditions
- Boundary conditions and loads
- Partitioning
- Fate and transport parameters
  - Organic carbon
  - Bed mixing and mass transfer
  - Volatilization

## Fate Model Inputs – Summary

| Group                  | Input(s)                                                                                        | Data Source(s)               | Approach                                                   |
|------------------------|-------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------|
| Initial<br>Conditions  | Starting D/F conc. in bed                                                                       | 2002-2005 TMDL sediment data | Polygons mapped to model grid                              |
| Boundary<br>Conditions | <ul><li>D/F conc. in water at:</li><li>SJR Inflow</li><li>HSC Inflow</li><li>HSC Open</li></ul> | TMDL surface water data      | Mean concentration from sample station(s) near boundary    |
| External<br>Loads*     | Point sources<br>Runoff<br>Atmospheric deposition                                               | TMDL sampling data           | Apply loads calculated for TMDL model                      |
| Partitioning           | K <sub>OC</sub><br>K <sub>DOC</sub>                                                             | TMDL water data; literature  | 3-phase calculations from data; corroborated by literature |

\*More detail provided on following slides

## Fate Model Inputs – Summary (cont.)

| Group           | Input(s)                                | Data Source(s)                  | Approach                                                                     |
|-----------------|-----------------------------------------|---------------------------------|------------------------------------------------------------------------------|
| Organic carbon* | f <sub>OC</sub> in sediment             | TMDL, RI sediment data          | Correlation with grain size Polygons mapped to model grid                    |
|                 | DOC in pore water                       | Literature                      | Constant value                                                               |
|                 | $f_{OC}$ , DOC in water column          | TMDL, long-term TCEQ water data | Average values from stations within model domain                             |
| Bed mass        | Diffusion coefficients                  | Literature                      | Vary by chemical based on MW                                                 |
| transport       | Porewater exchange coefficient          | Literature/<br>calibration      | Initial values based on experience at other sites; adjust during calibration |
|                 | Rate and depth of mixing (bioturbation) |                                 |                                                                              |
| Volatilization  | Henry's Law constant                    | Literature                      | Vary by chemical                                                             |
|                 | Water temperature                       | NOAA gages                      | Annual cycle fitted through data                                             |

<sup>\*</sup>More detail provided on following slides

## **Update: Expansion to Include OCDD**

- Generally same approach used for TCDD/F inputs as described in Workshop #1
- Coordinating with University of Houston on external loads
  - OCDD concentrations measured, but loads not quantified for TMDL
  - OCDD loads will be calculated using TMDL methodology
    - Awaiting further information from University of Houston

### **Update: External Loads**

- TCEQ Dioxin TMDL Study quantified external load estimation on an annual average basis
  - Point sources
    - Data gathered during Spring 2003 TMDL sampling
  - Stormwater runoff
    - Calculated based on land cover information, average congener concentrations in runoff samples, and rainfall
  - Direct (atmospheric) deposition
    - Calculated based on measured deposition fluxes and surface area of TMDL model segments
      - Average dry deposition flux for days with no rain
      - Average wet deposition flux for days with > 0.1" rainfall



#### **External Loads**

TMDL loads mapped onto model grid



## **Update: Sediment Organic Carbon**

#### Methodology

- Generate Thiessen polygons of sediment  $f_{oc}$  over study area (similar to initial conditions) to capture spatial variations in total carbon
- At each polygon location, specify  $f_{oc}$  of each size class such that
  - Total  $f_{oc}$  is honored
  - Differences among size class  $f_{oc}$  is honored



## Sediment Organic Carbon (cont.)

- Need to specify  $f_{oc}$  for each of the four bed sediment size classes simulated by the sediment transport model
  - Class 1: <62 μm (silt/clay)
  - Class 2: 62-250 µm (fine sand)
  - Class 3: 250-2,000 µm (medium-coarse sand)
  - Class 4: >2,000 µm (gravel)
- Data suggest that  $f_{oc}$  varies by size class



## Sediment Organic Carbon (cont.)



## Sediment Organic Carbon (cont.)

• "2 Class" model fit to identify relative difference in carbon content of Class 1 (silt/clay) vs. Class 2 - 4 (sand/gravel) sediments



## **Update: Water Column Organic Carbon**

- Model requires fraction of organic carbon on particulate matter  $(f_{oc})$  and DOC
- Two data sources used
  - TMDL data: limited number of sample events
    - Measured total and dissolved (TOC, DOC)
    - Particulate (POC) calculated by difference ( $f_{oc}$  = POC/TSS)
  - Long-term TCEQ data
    - Routinely measure TOC and total/volatile suspended solids (TSS, VSS) at multiple locations within SJR
    - Estimated DOC and  $f_{oc}$  two ways:
      - 1. Estimated DOC (and corresponding  $f_{oc}$ ) based on observed TOC/DOC relationship in TMDL data set
      - 2. Estimated  $f_{oc}$  from VSS/TSS

#### TMDL dataset



<sup>\*</sup> Outliers with calculated  $f_{oc}$  greater than 40% removed

• TOC/DOC relationship in TMDL dataset



• Estimated DOC/ $f_{oc}$  for TCEQ dataset



Note: Legend indicates SJR station location IDs.



• Estimated  $f_{oc}$  from TCEQ TSS/VSS dataset

$$f_{oc} = \frac{VSS \times 0.4}{TSS}$$



- Application in model
  - DOC
    - Spatially and temporally constant value of 10 mg/L
    - Combines TMDL and TCEQ datasets
  - $f_{oc}$ 
    - Spatially and temporally constant value of 9%
    - Combines TMDL and TCEQ data sets, including VSS-derived values
    - Similar to sediments, specify value for each sediment size class based on observed variation with grain size
      - Class 1: 9.9%
      - Classes 2-4: 1.2%



# Model Calibration Approach

## Fate Model Calibration Approach

- Calibration period
  - Multi-year simulation (2005 to 2010) allows assessment of bed dynamics
  - Overlaps sediment transport calibration period
- Key calibration targets

U.S. Environmental Protection Agency, Region 6. May 2011.

- Sediment: Approximately 5 times decline in area-weighted average 2378D/F concentration during calibration period
  - COPC Technical Memorandum (Integral and Anchor QEA 2011)
- Water column: Spatial patterns from TMDL dataset

Integral Consulting, Inc. and Anchor QEA, LLC, 2011. COPC Technical Memorandum - San Jacinto River Waste Pits

- Changes in chemical speciation (total, dissolved, and particulate)
- Differences among simulated chemicals (TCDD, TCDF, OCDD)

Superfund Site, prepared for McGinnes Industrial Maintenance Corporation, International Paper Company, and



#### **Sediment Bed**

• 2378D SWAC within site area





Data-based SWACs from COPC Tech Memo (Integral and Anchor QEA, 2011).

## Water Column Spatial Patterns





OCDD (Total)



Note: Open symbols represent averages where more than 50% of samples in the average are non-detect.

## **Preliminary Model Calibration**

- Initial contaminant fate model simulations completed for 6-year calibration period
  - Model is stable and mass balance closure is achieved
  - Run time: 26 hours
- Predicted water column results are in the general range of the data

## **Model Calibration Approach**

- Likely key calibration parameters
  - Sediment bed mixing rate and depth
  - Surface porewater exchange coefficient
- Sensitivity analysis
  - As part of calibration, key model parameters will be varied to evaluate model response and identify those to which the model is most sensitive
  - This will help understand key model uncertainties

## Status of Modeling

- Hydrodynamic model
  - Calibration complete
- Sediment transport model
  - Preliminary calibration complete
- Fate and transport model
  - Calibration initiated
- Modeling report scheduled for February 2012